Higher Dimensional Surgery and Steklov Eigenvalues
نویسندگان
چکیده
We show that for compact Riemannian manifolds of dimension at least 3 with nonempty boundary, we can modify the manifold by performing surgeries codimension 2 or higher, while keeping Steklov spectrum nearly unchanged. This shows certain changes in topology a domain do not have an effect when considering shape optimization questions eigenvalues dimensions and higher. Our result generalizes 1-dimensional surgery Fraser Schoen (Adv Math 348:146–162, 2019) to higher dimensional eigenvalues. It is proved unit ball does maximize first nonzero normalized eigenvalue among contractible domains \(\mathbb {R}^n\), \(n \ge 3\). this also true Using similar ideas, \(n\ge 3\), j-th maximized limit sequence degenerating disjoint union j balls, contrast case (Girouard Polterovich Funct Anal Appl 44:106–117, 2010).
منابع مشابه
Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues
This is the first in a series of two papers aiming to establish sharp spectral asymptotics for Steklov type problems on planar domains with corners. In the present paper we focus on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We pr...
متن کاملOn Principal Eigenvalues for Periodic Parabolic Steklov Problems
LetΩ be aC2+γ domain in RN ,N ≥ 2, 0 < γ < 1. LetT>0 and let L be a uniformly parabolic operator Lu= ∂u/∂t−∑i, j(∂/∂xi)(ai j(∂u/∂xj)) +∑ j b j(∂u/∂xi) + a0u, a0 ≥ 0, whose coefficients, depending on (x, t) ∈Ω×R, are T periodic in t and satisfy some regularity assumptions. Let A be the N ×N matrix whose i, j entry is ai j and let ν be the unit exterior normal to ∂Ω. Let m be a T-periodic functio...
متن کاملTwo-Parameter Eigenvalues Steklov Problem involving the p-Laplacian
We study the existence of eigenvalues for a two parameter Steklov eigenvalues problem with weights. Moreover, we prove the simplicity and the isolation results of the principal eigenvalue. Finally, we obtain the continuity and the differentiability of this principal eigenvalue. AMS Subject Classifications: 35J60, 35B33.
متن کاملDispersive Estimates for Higher Dimensional Schrödinger Operators with Threshold Eigenvalues I: the Odd Dimensional Case
We investigate L(R) → L∞(Rn) dispersive estimates for the Schrödinger operator H = −∆ + V when there is an eigenvalue at zero energy and n ≥ 5 is odd. In particular, we show that if there is an eigenvalue at zero energy then there is a time dependent, rank one operator Ft satisfying ‖Ft‖L1→L∞ . |t|2− n 2 for |t| > 1 such that ‖ePac − Ft‖L1→L∞ . |t| 1−n 2 , for |t| > 1. With stronger decay condi...
متن کاملDispersive Estimates for Higher Dimensional Schrödinger Operators with Threshold Eigenvalues Ii: the Even Dimensional Case
We investigate L(R) → L∞(Rn) dispersive estimates for the Schrödinger operator H = −∆ + V when there is an eigenvalue at zero energy in even dimensions n ≥ 6. In particular, we show that if there is an eigenvalue at zero energy then there is a time dependent, rank one operator Ft satisfying ‖Ft‖L1→L∞ . |t|2− n 2 for |t| > 1 such that ‖ePac − Ft‖L1→L∞ . |t| 1−n 2 , for |t| > 1. With stronger dec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometric Analysis
سال: 2021
ISSN: ['1559-002X', '1050-6926']
DOI: https://doi.org/10.1007/s12220-021-00706-0